Odd Semester, 2020

(Held in March, 2021)

ECONOMICS

(Honours)
(Mathematics)
Marks : 75
Time: 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, taking at least one from each Unit
Unit—I

1. (a) Find the equation of a straight line passing through the points $(3,2)$ and $(-1,4)$.
(b) In a town, 45\% read magazine $A, 55 \%$ read magazine $B, 40 \%$ read magazine C, 30% read magazines A and $B, 15 \%$ read magazines B and $C, 25 \%$ read magazines C and A and 10% read all the three magazines. Find what percentage do not read any magazine. What percentage read exactly two of the magazines?
(c) What is a power set? Give examples.
(d) State and prove De Morgan's rule of set union and set intersection.
2. (a) Define a function. What are the different types of functions? Explain some of their uses in Economics.
$2+4+4=10$
(b) Define a homogenous function. Show that the function

$$
z=f(x, y)=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

is homogenous of degree 3 .
UNIT-II
3. (a) Explain any three properties of determinants providing examples.
(b) Solve the following by using Cramer's rule :

$$
\begin{array}{r}
2 x-4 y+3 z=3 \\
4 x-6 y+5 z=2 \\
-2 x+y-z=1
\end{array}
$$

4. (a) Define the concept of linear programming. What are the essential components of a linear programming problem?
$2+3=5$
(b) A factory has 90, 80 and 50 running feet, respectively, of teak, pinewood and rosewood. Product A requires 2,1 and 1 running feet and product B requires 1,2 and 1 running feet of teak, pinewood and rosewood, respectively. If A could sell for $₹ 48$ and B could sell for $₹ 40$ per unit, how much of each should be produced and sold to maximise gross income out of his stock of wood? Give a mathematical formulation of this linear programming problem and solve by graphical method. $\quad 5+5=10$
Unit—III
5. (a) Evaluate the limit of the following : $2 \times 4=8$
(i) $\operatorname{Lt}_{x \rightarrow a} \frac{3 x^{2}-5 x^{-1}}{2 x^{2}+7 x^{-2}}$
(ii) $\operatorname{Lt}_{x \rightarrow 0} \frac{\sqrt{(a+x)}-\sqrt{(a-x)}}{3 x}$
(iii) $\operatorname{Lt}_{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{2 h}$
(iv) $\operatorname{Lt}_{x \rightarrow a} \frac{x^{9}-a^{9}}{x^{6}-a^{6}}$
(b) State the conditions for continuity of a function at a point $x=a$.
(c) Distinguish between 'limit of a variable' and 'limit of a function'.
6. (a) Find $\frac{d y}{d x}$ for the following : $2 \times 3=6$
(i) $y=\sqrt{\frac{1-x}{1+x}}$
(ii) $\left(2 x^{2}+3\right) e^{-3 x^{2}}$
(iii) $y=e^{\log x}$
(b) Find the total differential of $z=\sqrt{x+y} .3$
(c) Find the first- and second-order partial derivatives of

$$
z=\frac{x+y}{2 x+5 y}
$$

also verify that $\frac{\partial^{2} \boldsymbol{z}}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}$.
UniT-IV
7. (a) Integrate the following functions : $2 \times 5=10$
(i) $\int\left(2 e^{2 x}-4^{x}+4 x^{3}\right) d x$
(ii) $\int\left(3(7-6 x)^{3}\right) d x$
(iii) $\int \frac{5}{5-3 x} d x$

(5)

(iv) $\int \frac{1}{x} \log x d x$
(v) $\int_{0}^{5 / 3}\left(x^{2}-3 x+6\right) d x$
(b) Explain the difference between definite and indefinite integrals with examples.
8. (a) Explain the uses of integration in Economics.
(b) Given the demand function

$$
Q=\sqrt{60-\frac{3}{2} P}
$$

where Q is quantity demanded and P is price; obtain consumer surplus when $P=16$.
(c) Given the producer's supply function $x=\sqrt{-4+4 P}$ and market price is 10 ; find producer's surplus.

